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Example 1: the « Demons » algorithm

Method proposed by [Thirion1998]  [Pennec1999]
J.P. Thirion. Image matching as a diffusion process: an analogy with 
Maxwell’s demons. 
Med Image Analysis, 2(3):243–260, 1998.

• Popular
• “Simple” to implement
• A posteriori explanation
• Numerous developments
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Principle

• Iterative algorithm
• A each iteration
• Step1: estimate the deformation vector field (DVF)
• Step2 : regularize the DVF

• Stopping criteria to determine
Images to register

Displacement at x

DVF
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Principle: step 1

• Displacement evaluation at every pixel x
• This displacement is: 
• It is // to the image I1 gradient (I1 is the moving image)
• Proportional to pixel grey level difference between the 2 images at location x. 

• « Small » displacement, bounded by
• Alpha = user parameter

T 3 = T (I2, I3)

T 4 = T (I3, I4)

t in[a : b]

a b

T (x, t) = x +
b� t

b� a
T a +

t� a

b� a
T b

rDSSD(x,u) =
I2(x+ u(x))� I1(x)

||rI1(x)||2 + ↵2(I2(x+ u(x))� I1(x))2
rI1(x)

2
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Explanation
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Explanation
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Explanation
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Explanation
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Explanation
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Explanation
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Explanation
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Principle: step 2

• Regularize the DVF with a Gaussian filter
(need parameter sigma)

• Possible to regularize: 
• The total displacement (previous + total)
• The current displacement only (fluid registration)

T 3 = T (I2, I3)

T 4 = T (I3, I4)

t in[a : b]

a b

T (x, t) = x +
b� t

b� a
T a +

t� a

b� a
T b

rDSSD(x,u) =
I2(x+ u(x))� I1(x)

||rI1(x)||2 + ↵2(I2(x+ u(x))� I1(x))2
rI1(x)

ui+1(x) = G�(rDSSD(x,ui) � ui(x))

2

T 3 = T (I2, I3)

T 4 = T (I3, I4)

t in[a : b]

a b

T (x, t) = x +
b� t

b� a
T a +

t� a

b� a
T b

rDSSD(x,u) =
I2(x+ u(x))� I1(x)

||rI1(x)||2 + ↵2(I2(x+ u(x))� I1(x))2
rI1(x)

ui+1(x) = G�(rDSSD(x,ui) � ui(x))

G�(x) =
1p
2⇡�

e�
x2

2�2

2
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Practical considerations

• Iterative algorithm

• Estimation of the image gradient 
• Only once
• One 3D vector by pixel

• Displacement estimation at each pixel
• One 3D vector by pixel for the current field
• One 3D vector by pixel for the current displacement

T 3 = T (I2, I3)

T 4 = T (I3, I4)

t in[a : b]

a b

T (x, t) = x +
b� t

b� a
T a +

t� a

b� a
T b

rDSSD(x,u) =
I2(x+ u(x))� I1(x)

||rI1(x)||2 + ↵2(I2(x+ u(x))� I1(x))2
rI1(x)

ui+1(x) = G�(rDSSD(x,ui) � ui(x))

2

T 3 = T (I2, I3)

T 4 = T (I3, I4)

t in[a : b]

a b

T (x, t) = x +
b� t

b� a
T a +

t� a

b� a
T b

rDSSD(x,u) =
I2(x+ u(x))� I1(x)

||rI1(x)||2 + ↵2(I2(x+ u(x))� I1(x))2
rI1(x)

ui+1(x) = G�(rDSSD(x,ui) � ui(x))

2

T 3 = T (I2, I3)

T 4 = T (I3, I4)

t in[a : b]

a b

T (x, t) = x +
b� t

b� a
T a +

t� a

b� a
T b

rDSSD(x,u) =
I2(x+ u(x))� I1(x)

||rI1(x)||2 + ↵2(I2(x+ u(x))� I1(x))2
rI1(x)

2
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Practical considerations

3D Gaussian filter on the DVF
• Separable, with 1D Gaussian filter
• [Deriche 1993]
• Apply to dimensions 1,2,3 on all vector components: 9 loops

Stopping criteria
• Number of iterations (by experiment)
• DVF norm < threshold
• etc …

Interpolation of non integer coordinates
• Nearest neighbours
• Linear
• Other … 
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Practical considerations

Computing time linear to the number of pixels
« Crop » the images
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Practical considerations

Computing time linear to the number of pixels
« Crop » the images  = 50% time gain (here) !
Can be automatized (segmentation)
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Practical considerations

Computing time linear to the number of pixels

Images sub-sampling
• = increase the « spacing » (2mm pixel size instead of 1mm)
• In 3D, if divide by 2 : 8 times less pixels

Multi-scale strategy
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Interpretations

[Thirion1998] relates Gaussian filtering to the diffusion of heat in 
homogeneous material, by analogy with the Maxwell 's demons.

[Cachier2004] This criterion was shown to be an approximation of a 
second order gradient descent of the SSD

[Bro-Nielsen1996] showed that such Gaussian filtering may be 
considered as an approximation of the linear elastic filter used in the 
viscous-fluid modelling. 
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Variants

Symmetric Demons
[Wang2005] 
H. Wang, L. Dong, J. O'Daniel, R. Mohan, AS. Garden, KK. Ang, DA. Kuban, M. Bonnen, 
JY. Chang, and R. Cheung. Validation of an accelerated 'demons‘ algorithm for 
deformable image  registration in radiation therapy. Phys Med Biol, 50(12):2887-905, 
June 2005.

• Improve speed by 40% (longer, but fewer iteration)
• Maybe more robust

Deformable image registration using demons 2891

transverse image size of resolution 256 × 256, and used a total of three scales, with the lowest
resolution at 64 × 64. The number of scales used can be easily extended to 4–6 when a larger
deformation is observed or a higher resolution is used in the original image. This pyramidal
multiresolution approach not only reduced the need for small deformations between two
images, but also improved convergence, thus significantly increasing the calculation speed. In
addition, we also pre-processed our CT images and performed a rigid-body registration to make
the alignment of the two images reasonably close. We used a simple thresholding technique
to extract bony structures in the two images based on CT numbers and then used similarity
measures (cross-correlation or mutual information) to find the best (first step) alignment.

Cachier et al (1999) proposed another normalization factor α that allows force strength to
be adjusted adaptively in each iteration. We adopted a similar implementation in our algorithm
in which equation (3) becomes the following:

"u = (m − s) ×




"∇s

|
⇀

∇s|2 + α2(s − m)2
+

"∇m

|
⇀

∇m|2 + α2(s − m)2



 . (4)

From the relationship: | "∇s|2 + α2(s − m)2 ! 2 · | "∇s| · α · |s − m|, it can be shown that
equation (4) is bounded by a step size of 1

2α
(Cachier et al 1999). A smaller α value can

be initially used for relatively large deformations and the step size then reduced when the
algorithm approaches convergence. This will further speed up convergence.

The effect and the impact of the σ 2 and α parameters were not investigated in this
preliminary study. We have chosen σ 2 = 1.0 for the Gaussian filter and α = 0.4 for the
normalization factor based on our initial experience using many clinical CT images (abdominal,
thoracic and head-and-neck treatment sites). We also fixed σ 2 and α when switching from
one resolution level to the next.

We implemented our modified demons algorithm in C language using a personal computer
with a 2.8 GHz Intel Xeon processor running Microsoft Windows. Patients’ CT images were
acquired through two institutional review board-approved protocols, in which each patient’s
anatomy was imaged by CT before radiation treatment while the patient was in the treatment
position. One of the goals for these two studies was to quantify the anatomical changes during
the course of radiation therapy using an in-room CT-on-Rails system (Court et al 2003, 2004,
Barker et al 2004).

2.5. Validation studies

Quantitative validation of a deformable registration algorithm for medical images is very
difficult because of the general lack of known solutions in clinical situations. In addition,
deformable image registration is inherently degenerative since multiple solutions may exist
for a given match of image intensity. The appearance of the image after deformable image
registration can only serve as a qualitative preliminary assessment.

We evaluated the modified demons algorithm for deformable image registration in
three ways: (1) by simulated deformation of patients’ CT images, (2) by measurement
in a deformable pelvis phantom and (3) by evaluation of algorithm-segmented anatomical
structures in sequential CT images of the same patient. The first two methods were quantitative;
the third method was qualitative (in this study). They are described in detail below.

2.5.1. Mathematically simulated deformation. Theoretically, an original CT image can
be transformed so as to simulate a known deformation. However, arbitrarily introduced
organ deformation may not represent clinical reality. Therefore, we chose to create a
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Inverse consistency error
6146 D Yang et al

(a) (b)

Figure 1. Illustration of asymmetric registration and inverse consistency error. Point A (in
image I) and B (in image J) are matching points. V is computed by registering I to J. U is computed
by registering image J to image I. (a) After imperfect asymmetric registrations, point A moves to
point A′ and point B moves to point B′. (b) Using U, A′ will be moved to A′′. Similarly, B′′ is
B′ moved by using V. The distance from A to A′′, and from B to B′′, are the inverse consistency
errors.

be expressed using a Taylor expansion of the first-order terms in the following differential
form:

E1 =
∫

!

((Id + ∇I · V )2 + α2R(V )) d!, (3)

where Id = J − I , ∇ is the gradient operator, · is the vector inner product operator.
V could be solved by minimizing E1 with many numerical methods, either iteratively or

analytically. Barron et al (1994) have reviewed many published optical flow algorithms (Barron
et al 1994, McCane et al 2001) and summarized the algorithms into four categories: differential
techniques, region-based matching, energy-based methods and phase-based techniques. This
paper uses the Horn–Schunck (HS) algorithm (Horn and Schunck 1981) and the demons
diffusion algorithm (Thirion 1998). These two algorithms belong to the differential techniques
where the differential form of the system cost equation is solved using the image intensity and
gradient. Such differential optical flow algorithms are often referred to as small-motion-model
algorithms because they only work if |V | is sufficiently small so that the Taylor expansion
series can be applied.

1.1.2. Registration in the inverse direction. Traditionally, if image J needs to be registered
to image I in the backward direction, the second motion field U needs to be computed so
that

I = J ◦ U. (4)

A similar system equation could be written as

E2 =
∫

!

((I − J + ∇J · U)2 + α2R(U)) d!. (5)

Even if V has already been computed, U has to be computed independently because there
is unfortunately no direct dependence among the solutions of V and U. This is illustrated in
figure 1(a).

1.1.3. Inverse consistency. It is desirable for many applications that V and U are inversely
consistent so that registration could start with either image and the results are consistent.
Inverse consistency could be written as

V ◦ U = 0 = U ◦ V, (6)

where the composition operator ◦ between two motion fields is defined in table 1.
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Variants

Fast inverse consistent Demons
[Yang et al 2008]
Deshan Yang, Hua Li, Daniel A Low, Joseph O Deasy, and Issam El Naqa. A fast inverse 
consistent deformable image registration method based on symmetric optical flow 
computation. Phys Med Biol, 53(21):6143-6165, Nov 2008.

• The two images were symmetrically deformed toward the other until both 
deformed images are matched.
• This principle is called “consistent” because it insure implicitly that the 

inverse deformation field exist.
• The computation time is typically higher than conventional Demons, but 

lower than Symmetric Demons. 
• Convergence speed seems to be improved by this version.
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Variants

Diffeomorphic Demons
[Vercauteren et al 2007, 2009]
Tom Vercauteren, Xavier Pennec, Ezio Malis, Aymeric Perchant, and Nicholas Ayache. Insight 
into efficient image registration techniques and the demons algorithm. Inf Process Med 
Imaging, 20:495-506, 2007.

• Modification to constrain the deformation to be a diffeomorphism
• Diffeomorphism: that is a continuous, one-to-one, onto, and differentiable 

mapping. 
• Such kind of deformation maintains the topology and guarantees that connected 

regions of an image remain connected
• This approach leads to similar results in term of accuracy than the ones given by 

the initial approach, but with smoother transformation. 
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Conclusion

« Demons » algorithm

• Simple, very used, efficient
• Assumption on pixel intensity conservation (SSD)
• Smooth transformation but non necessarily physically plausible
• GPU implementation also available
• Still studied

25
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Tiny poll …

https://www.wooclap.com/SAXELC

https://www.wooclap.com/SAXELC
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Evaluation

How to evaluate the result 
of DIR algorithm ?
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Evaluation

How to evaluate ?
• No gold-standard
• Use of phantom: real or numeric
• Consistency (symmetry, negative Jacobian)
• Use of manual anatomical landmarks, 

• Distances between reference and deformed landmarks
• TRE = Target Registration Error

• Overlap of segmented structures (DICE coefficient)
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Dice Similarity Coefficient (DSC)

Quantifier le chevauchement (overlap) entre deux structures 

Index de Jacquard 

TS
TS

TSDSC
+
Ç

=
2

),(

TS
TS

TSJSC
È
Ç

=),(
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Evaluation
Examples: 

[Sarrut et al. IEEE TMI 2007]   [Brock et al IJROBP 2010]    [Murphy et al IEEE TMI 2011]

“EMPIRE “challenge:
Evaluation of Methods for Pulmonary Image Registration
• 20 thorax inhale/exhale pairs of images
• 34 teams worldwide
• TRE error : ~10 first <1 mm  and ~20 first <2mm 
• (we were 1.5mm, 14/34)
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https://empire10.grand-challenge.org

https://empire10.grand-challenge.org/




EMPIRE
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Evaluation - conclusion

Evaluation with TRE or structures overlap : « offline »
• Time consuming
• Not perfect (what happens in areas within landmarks ?)

If DIR is proposed in clinic, how to evaluate « online » ?


